Approaches for Web Spam Detection

نویسندگان

  • Kanchan Hans
  • Laxmi Ahuja
  • S. K. Muttoo
چکیده

Spam is a major threat to web security. The web of trust is being abused by the spammers through their ever evolving new tactics for their personal gains. In fact, there is a long chain of spammers who are running huge business campaigns under the web. Spam causes underutilization of search engine resources and creates dissatisfaction among web community. Web Security being a prime challenge for search engines has motivated the researchers in academia and industry to devise new techniques for web spam detection. In this paper we present a comprehensive survey of techniques for detection of web spam and discuss their applicability and performance in various scenarios where they outperformed the others. We have categorized web spam detection with the primary focus on the approaches used for spam detection. The paper also gives the possible directions for future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Web Spam Detection Using Multiple Kernels in Twin Support Vector Machine

Search engines are the most important tools for web data acquisition. Web pages are crawled and indexed by search Engines. Users typically locate useful web pages by querying a search engine. One of the challenges in search engines administration is spam pages which waste search engine resources. These pages by deception of search engine ranking algorithms try to be showed in the first page of ...

متن کامل

Technical Report Yr-2008-001 Witch: a New Approach to Web Spam Detection

We present an algorithm, witch, that learns to detect spam hosts or pages on the Web. Unlike most other approaches, it simultaneously exploits the structure of the Web graph as well as page contents and features. The method is efficient, scalable, and provides state-of-the-art accuracy on a standard Web spam benchmark.

متن کامل

An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network

In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014